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Preface 
The idea for Yagel numbers came to me in a sudden moment of inspiration – a curiosity about whether the 
concept of Mersenne numbers could be generalized using primorials to improve the chances of generating 
primes. It wasn’t born out of a formal academic pursuit but rather out of a personal fascination with prime 
numbers and a desire to explore them through a fresh lens. 

Like many ideas sparked by intuition, it began with optimism – a belief that this new approach might offer 
insights or even practical breakthroughs in prime number searches. I also won’t deny that naming these 
numbers after myself carried its own appeal; it’s human nature to want to leave something behind with your 
name attached to it. 

However, as the work unfolded, so did the realization that competing with the efficiency of the Lucas-
Lehmer test for Mersenne primes was futile. What started as an ambitious pursuit transformed into 
something humbler yet equally meaningful – a mathematical exploration that highlights patterns, raises 
questions, and invites further study. 

This paper is not about claiming superiority over existing methods. Instead, it serves as a thought experiment 
– a blend of theory and computation that reflects the joy of discovery and the process of learning. It is my 
hope that this work, regardless of its ultimate applications, sparks curiosity in others and perhaps inspires 
someone to take the next step. 

Disclosure: While all mathematical concepts, algorithms, and interpretations in this paper are entirely my 
own, I used OpenAI's ChatGPT to assist with wording and structure, improving the readability of the text. As 
a non-native English speaker, this support was especially valuable for presenting my ideas in a structured 
and accessible manner without altering their originality. 

 

Mr. Yagel Bar 

 

  



Abstract 
Yagel numbers represent a novel generalization of Mersenne numbers, constructed using primorials, the 
product of consecutive prime numbers, to amplify prime density. Defined as: 

𝑌(𝑛) = ቌෑ 𝑝𝑟𝑖𝑚𝑒𝑠

ିଵ

ୀଵ

ቍ ⋅ 𝑝
 − 1        𝑛, 𝑘 ∈ ℕ∗ 

where 𝑝 is the 𝑘 -th prime raised to the power 𝑛.  

These numbers systematically exclude divisibility by small primes, creating a refined search space for 
primes. Inspired by the sieve-like behavior of Mersenne numbers, Yagel numbers extend this idea to higher 
orders, revealing structural biases that favor primality. 

This paper explores Yagel numbers’ growth patterns, prime densities, and computational feasibility. Through 
numerical experiments and probabilistic primality testing (Miller-Rabin), Yagel numbers exhibit an 
unexpectedly high density of primes within specific ranges. While their exponential growth imposes 
practical limitations for large-scale searches, their observed deviations from expected prime densities raise 
theoretical questions about prime structures and sieving mechanisms . 

Rather than competing with established methods like the Lucas-Lehmer test for Mersenne primes, Yagel 
numbers offer a thought experiment – combining intuition and computation to examine prime generation 
through structured filtering. This exploration aims to inspire further research into prime-rich constructs and 
sieve-based strategies for prime discovery. 

 

Introduction 
This paper introduces Yagel numbers, a natural generalization of Mersenne numbers designed to amplify 
prime density using primorial factors. A Yagel number of order 𝑘 and exponent 𝑛 , denoted as 𝑌 , where 𝑘 
and 𝑛 are positive natural numbers, is defined as: 

𝑌(𝑛) = 𝑝ିଵ# ⋅ 𝑝
 − 1 = ቌෑ 𝑝𝑟𝑖𝑚𝑒𝑠

ିଵ

ୀଵ

ቍ ⋅ 𝑝
 − 1 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅  ⋯  ⋅ 𝑝ିଵ ⋅ 𝑝

 − 1 

where the product includes all primes up to the (𝑘 − 1)-th prime and 𝑝
 is the 𝑘 -th prime raised to the 

power 𝑛.  

Here, the order parameter 𝑘 refers to the number of prime factors used in the scalar factor, or primorial, 
while 𝑛 represents the exponent of the 𝑘 -th prime. This generalization builds directly on the structure of 
Mersenne numbers, which are a special case and the first-order Yagel numbers, where: 

𝑀 = Yଵ(n) = 2୬ − 1 



The Intuition 

The primary motivation behind Yagel numbers is to construct integers systematically that are not divisible by 
the first 𝑘 primes, increasing the likelihood of discovering "Yagel primes". This approach takes inspiration 
from the Sieve of Eratosthenes and the sieve-like behavior of Mersenne numbers, which exclude all 
multiples of 2. Yagel numbers extend this principle to higher orders of primes. By increasing 𝑘, they 
eliminate more non-prime candidates, creating a progressively refined space for potential primes.  

Numerical Examples 
To illustrate, consider a few small examples: 

 𝑌ଶ(1) = 2 ⋅ 3ଵ − 1 = 5  →  Prime 

 𝑌ଶ(2) = 2 ⋅ 3ଶ − 1 = 17  →  Prime 

 Y(2) = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17ଶ − 1 = 8,678,669  →  Prime 

These examples demonstrate the effectiveness of Yagel numbers in generating primes at small scales. 
However, as 𝑘 and 𝑛 grow, the rapid increase in magnitude complicates both computation and primality 
testing, presenting challenges that this work explores in depth . 

The tie between Mersenne numbers and Yagel numbers provides a familiar entry point into this new 
framework. While Mersenne primes rely exclusively on powers of 2, Yagel numbers leverage the 
multiplicative and exclusionary properties of primorials, offering a broader and potentially richer prime-
generating structure. In this paper, I examine the construction, properties, and limitations of Yagel numbers, 
focusing particularly on their growth behavior, primality characteristics, and the computational implications 
of their use. 

  



Methodology 

Calculation of a Yagel Number 
The Yagel numbers formula provides a straightforward calculation for any  pair. While small values can be 
computed by hand, larger values require computational support. The following pseudocode illustrates the 
procedure.  

 
function CalculateYagelNumber(k, n): 
    p ← GetKthPrime(k)              // Retrieve the k-th prime 
    f ← ProductOfAllPrimes(k - 1)   // Product of the first (k-1) primes 
    Y ← f * pn - 1               // Calculate the Yagel number 
    return Y 
 

 
Algorithm 1. Calculate Yagel Number (𝑘, 𝑛). Return 𝑌(𝑛). 

 Input 1: Integer 𝑘 > 0 

 Input 2: Integer n > 0 

 Output: A potentially very large integer 

Primality Test 
To verify the primality of Yagel numbers, the Miller-Rabin primality test is employed. This probabilistic 
method balances computational efficiency with reliability, especially for large numbers.  

 
function IsPrime(n, rounds): 

let s > 0 and d odd > 0 such that n − 1 = 2sd   
// by factoring out powers of 2 from n − 1 
repeat rounds times: 

a ← random(2, n − 2)  // n is probable prime to base 1 and n − 1 
x ← ad mod n 
repeat s times: 

y ← x2 mod n 
if y = 1 and x ≠ 1 and x ≠ n − 1 then  

// nontrivial square root of 1 modulo n 
return false 

x ← y 
if y ≠ 1 then 

return false 
return true 

 
 
Algorithm 2. Test Primality of Yagel Number. 

 Input 1: n > 2, an odd integer to be tested for primality 

 Input 2: rounds > 0, the number of rounds of testing to perform 

 Output: False if composite, True if probably prime 

Note: The computational constraint of Miller-Rabin test is reviewed in the discussion section. 



Bulk Generation of Yagel Numbers 
Generating multiple Yagel numbers efficiently involves looping over a range of orders (𝑘) and exponents 
(𝑛), subject to constraints like maximum digit length. The primality test is performed with seven iterations to 
reduce the false-positive rate to approximately 0.0061%. 

 
function CalculateRangeOfYagelNumbers(min_k, max_k, max_digits): 
    results ← [] 
    for k ← min_k to max_k - 1 do: 
        n ← 1 
        while true do: 
            Y ← CalculateYagelNumber(k, n) 
            digits ← CountDigits(Y) 
 
            if digits > max_digits: 
                break 
 
            is_prime ← IsPrime(Y, 7) // use 7 rounds 
            results.append((k, n, Y, digits, is_prime)) 
 
            n ← n + 1 
    return results 
 

 
Algorithm 3. Generate Range of Yagel Numbers. 

 Input: Inclusive lower bound min_k, exclusive upper bound max_k, and max_digits. 

 Output: A list of tuples containing 𝑌(𝑛) for each valid combination. 

 Example: Generate Yagel numbers for 𝑘 ∈ [1, 51) and up to 5,000 digits (< 10ହ). 



Results and Observations 
 

Yagel Numbers Per Order and Exponent – Examples 
Order 

(𝒌) 
𝐤𝐭𝒉 

Prime 
Power 

(𝒏) 
𝒀𝒌(𝒏) 
#Digits 

𝒀𝒌(𝒏) 
Prime 

Yagel Number - 𝒀𝒌(𝒏) 

1 2 1 1  1 
1 2 2 1 V 3 
1 2 3 1 V 7 
1 2 10 4  1,023 
1 2 107 33 V 162,259,276,829,213,363,391,578,010,288,127 
1 2 11,213 3,376 V 2,814,…,392,191 
1 2 16,606 4,999  8,018,…,904,063 
2 3 1 1 V 5 
2 3 2 1 V 7 
2 3 3 2 V 13 
2 3 10 6  118,097 
2 3 131 63 V 636,669,967,197,883,491,262,127,134,516,276,007,946

,623,425,982,895,419,891,235,893 
2 3 9,204 4,392 V 530,955,…,888,161 
2 3 10,476 4,999  4,200,…,663,841 
3 5 1 2 V 29 
3 5 2 3 V 149 
3 5 3 3  749 
3 5 10 8  58,593,749 
3 5 479 336 V 384,399,…,468,749 
3 5 4,418 3,089 V 67,240,…,593,749 
3 5 7,150 4,999  2,592,…,093,749 

20 73 1 27  573,657,473,228,859,495,079,173,569 
20 73 2 29 V 41,876,995,545,706,743,140,779,670,609 
20 73 3 31  3,057,020,674,836,592,249,276,915,954,529 
20 73 167 335 V 1,175,…,229,729 
20 73 966 1,814 V 7,331,…,253,009 
20 73 2,686 4,998  237,276,…,335,889 
27 103 1 41  23,984,823,528,925,228,172,706,521,638,692,258,396,

209 
27 103 2 43  2,470,436,823,479,298,501,788,771,728,785,302,614,8

09,629 
27 103 3 45 V 254,454,992,818,367,745,684,243,488,064,886,169,325

,391,889 
27 103 1,561 3,181 V 2,546,…,788,209 
27 103 2,464 4,998  995,453,…,108,669 
38 163 1 64  5,766,152,219,975,951,659,023,630,035,336,134,306,5

65,384,015,606,066,319,856,068,809 
38 163 2,216 4,964 V 57,072,…,826,669 
38 163 2,231 4,997  86,944,…,381,689 



47 211 1 85  1,645,783,550,795,210,387,735,581,011,435,590,727,98
1,167,322,669,649,249,414,629,852,197,255,934,130,7

51,870,909 
47 211 32 157 V 1,858,…,360,009 
47 211 53 206 V 11,996,…,414,109 
47 211 93 299 V 11,229,…,518,109 
47 211 2,115 4,998  561,672,…,667,309 
48 223 1 87  367,009,731,827,331,916,465,034,565,550,136,732,339

,800,312,955,331,782,619,462,457,039,988,073,311,157
,667,212,929 

48 223 63 233 V 14,440,…,907,969 
48 223 66 240 V 160,137,…,148,989 
48 223 658 1,630 V 2,517,…,889,789 
48 223 2,092 4,997  74,155,…,538,109 
50 229 1 92  19,078,266,889,580,195,013,601,891,820,992,757,757,

219,839,668,357,012,055,907,516,904,309,700,014,933
,909,014,729,740,189 

50 229 2 94  4,368,923,117,713,864,658,114,833,227,007,341,526,40
3,343,284,053,755,760,802,821,371,086,921,303,419,8

65,164,373,110,503,509 
50 229 3 97  1,000,483,393,956,475,006,708,296,808,984,681,209,5

46,365,612,048,310,069,223,846,093,978,904,978,483,
149,122,641,442,305,303,789 

50 229 281 753 V 108,261,…,764,189 
50 229 379 984 V 198,770,…,044,589 
50 229 1,979 4,760 V 10,842,…,124,589 
50 229 2,080 4,998  239,059,…,551,109 

 
Table 1. Yagel Numbers Per Order k and Exponent n – Examples. 

 
Note: Due to the impracticality of presenting the entire dataset within this paper, Table 1 provides a 
representative subset of Yagel numbers – some prime, some composite, spanning both high and low 
magnitudes. The following Figure 1 visualizes all Yagel primes identified in the specified range, offering 
insights into their distribution. For replication and further analysis, the complete dataset, covering values 
for 𝑘 ≤ 50 and up to 5000 digits, may be hosted online in future releases at yagelnumbers.org .



Distribution of Yagel Primes per Order 𝑘 
 

  
Figure 1. All Yagel primes, for the first 50 orders and up to 5,000-digit numbers. 

Note: Marked with green glow: when 𝑛 itself is also a prime number.
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Primes Distribution 𝑘 ≤ 50 
I counted the number of Yagel primes found for each order 𝑘 that has more than 100 
digits, and up to 5000 digits, and binned them under same prime count. 

Primes Count Number of Orders Orders 
0 0  
1 0  
2 1 24 
3 5 29, 34, 44, 47, 48 
4 5 5, 11, 14, 26, 43 
5 3 22, 25, 35 
6 8 20, 30, 31, 38, 39, 40, 42, 50 
7 8 6, 9, 16, 23, 33, 37, 45, 46 
8 3 15, 28, 36 
9 7 4, 7, 10, 17, 19, 21, 49 
10 4 8, 12, 13, 41 
11 5 1, 2, 18, 27, 32 
12 1 3 

 
Table 2. Yagel primes distribution 𝑘 ≤ 50 . 

 

 

Figure 2. Distribution of number of Yagel primes counted at the 100 digits to 5000 digits range, 𝑘 ≤ 50. 
Histogram. 
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Observations  

 An interesting characteristic observed in Table 1 is the consistency of the least 
significant digits (LSD) among Yagel numbers of higher orders. For 𝑘 ≥ 3, 
the unit digit is always 9, and the tens digit is always even, due to the result of 
subtracting 1 from multiples of composite factors involving both 2, 3 and 5. 
For orders 𝑘 < 3, the LSD is never 9, due to the opposite reason. 

 From Figure 1, it can be seen that 𝑘 = 47 and 𝑘 = 48, have only 3 primes 
each under 5000 digits.  

 The largest Yagel prime found in the range is 𝑌ଷ଼(2216) – Marked in yellow. 

 From Figure 2, it is noticeable that Yagel primes are distributed around 7 
primes in the 100 to 5000 digits range, but with no correlation to the value of 
𝑘 itself. 

Discussion 

Growth Characteristics 
In analyzing the growth behavior of Yagel numbers, it becomes evident that both 
increasing 𝑘 and increasing 𝑛 lead to substantial growth, albeit at different rates. 

Growth Effects of 𝑘 

Increasing the order parameter 𝑘 primarily impacts the base factor 𝑓 in the formula: 

𝑌(𝑛) = 𝑓 ⋅ 𝑝 − 1 

Where 𝑓 is the product of the first 𝑘 − 1 primes. The growth of 𝑓 follows the 
asymptotic relation: [1] 

𝑓 ∼ 𝑒൫ଵା(ଵ)൯ 

implying it grows faster than any polynomial but slower than pure exponential 
functions. Additionally, the 𝑘-th prime 𝑝 in contributes to the magnitude of the 
expression through its own growth, particularly when raised to a power 𝑛. 

Growth Effects of 𝑛 

By contrast, increasing the exponent 𝑛 affects the exponent in 𝑝
 directly, leading to 

true exponential growth. Even modest increases in 𝑛 can result in dramatic size 
escalation.  

For example: 

 If 𝑝 = 17 and 𝑛 increases from 1 to 2, 𝑝
 jumps from 17 to 289 

 When 𝑛 increases further to 3, it leaps to 4913. 



Comparison the Growth Rates: 𝑘 vs. 𝑛 

While both larger 𝑘 and 𝑛 increase Y୩(n), the growth caused by 𝑛 has a dominates 
because exponential scaling in  𝑝

 outpaces the quasi-exponential growth caused by 
the product of primes as 𝑘 increases. 

Summary of Growth Trends: 

Growth driven by 𝑛 (exponential) is significantly larger than growth driven by 𝑘 
(quasi-exponential) 

Sieve Density and Prime Bias 
The central hypothesis behind Yagel numbers is that excluding divisibility by small 
primes increases the likelihood of generating primes. This concept is rooted in the 
sieve-like behavior inspired by the Sieve of Eratosthenes. 

By removing all numbers divisible by primes up to the (𝑘 − 1)-th prime, the 
probability of primality should increase among the remaining candidates. This can be 
modeled as: 

𝑓 = ෑ ൬1 −
1

𝑝
൰

ஸ

 

Slow Convergence of Sieve Density 

While this formula converges to zero as 𝑘 → ∞, the convergence is slow 

ෑ ൬1 −
1

𝑝
൰

ஸ

≈
𝑒ିఊ

ln (𝑘)
 

where 𝛾 is the Euler-Mascheroni constant. [2] 

For example, to remove 95% of all natural numbers requires using the 7398th prime. 
At that stage, the primorial of this prime exceeds 10ଷଶ,, making computation 
infeasible. 

Practical Implications 

Because of this slow convergence, the computational cost of filtering candidates 
outweighs the benefits of sieve-like cleanup when searching for very large primes. 
This observation highlights an inherent limitation of Yagel numbers for large-scale 
prime searches. 

Density of Primes 
To evaluate whether Yagel primes occur more frequently than random primes, we 
compare observed counts against predictions based on the Prime Number Theorem 
(PNT). 



For a sufficiently large number 𝑁, the probability that a random integer is prime 
approximates: [3] 

𝑃(𝑁) ≈
1

ln(𝑁)
 

This result suggests that primes become sparser as numbers grow larger. To estimate 
the expected number of primes within a given range, we integrate this 
approximation. 

Deriving the Expected Value Formula 

The cumulative count of primes up to a number 𝑥 is represented by the prime-
counting function 𝜋(𝑥). The Prime Number Theorem asserts that: [4] 

𝜋(𝑥) ∼
𝑥

ln(𝑥)
 𝑎𝑠 𝑥 → ∞ 

For a more precise approximation, we use the logarithmic integral function: [3] 

Li(x) = න
1

ln(𝑡)
dt

௫

ଶ

 

which better models prime density than 
௫

୪୬(௫)
.  

The expected number of primes within a range can therefore be estimated as: [3] 

𝐸(𝑥) = 𝐿𝑖(10୫ୟ୶_ௗ௧௦) − 𝐿𝑖(10୫୧୬_ௗ௧௦) 

This approach reflects the asymptotic density of primes as numbers grow 
exponentially within specified ranges. 

Applying the Formula to the Observed Range 

For the range analyzed in this paper – numbers with 100 to 5000 digits, (as shown in 
Table 2), we approximate: 

𝐿𝑖(10ହ) − 𝐿𝑖(10ଵ) 

Simplifying this logarithmic interval, we focus on the logarithmic approximation: 
[4] 

ln(5000) − ln(100) ≈ 3.9 

This result reflects the expected density of primes per logarithmic scale rather than 
the total count of primes in the range. The observed counts of Yagel primes can then 
be compared against this density to determine whether their occurrence 
demonstrates bias or deviation from random expectations. 

 



Observed Data 

Yagel numbers grow systematically by multiplying primes, creating a sequence that 
differs fundamentally from the random distribution of integers assumed in the 
Prime Number Theorem. Despite this difference, their growth rate—dominated by 
the largest prime factor raised to a power (𝑝

)—ensures that Yagel numbers span 
ranges comparable to those modeled by logarithmic intervals . 

This growth pattern allows us to approximate their density using predictions derived 
from the Prime Number Theorem and logarithmic integrals, which estimate the 
expected number of primes within exponentially growing ranges . 

By comparing the observed distribution of Yagel primes to this expected density, 
we test whether their structured construction introduces a bias favoring primes 
beyond what is predicted for randomly distributed integers. Table 3 summarizes the 
results: 

Primes Count Orders Count 
< 4 6 
= 4 5 
> 4 39 

 
Table 3. Distribution of Yagel 𝑘 ≤ 50 by bins less than, equal to, and greater than 4. 

Key Findings 

The data show a higher-than-expected prime count, with 39 cases exceeding the 
predicted value of 4. Yagel numbers show deviations from the distribution expected 
for randomly selected integers. 

Statistical Evidence of Bias or Structured Patterns 

The deviation observed in Table 3 points to structural features of Yagel numbers that 
favor primality. Potential explanations include : 

 Mathematical Bias: Their multiplicative construction may enhance prime-
rich patterns . 

 Systematic Filtering: Avoidance of small-prime factors inherently reduces 
composite candidates . 

 Prime Density Oscillations: Correlations with density peaks could amplify 
observed clustering. 

While these biases provide interesting insights, their practical significance diminishes 
as 𝑘 increases due to slow convergence. 

 

  



Primality Testing of Mersenne Primes: An Interlude to the Lucas-
Lehmer Test 

The Special Structure of Mersenne Primes 

Mersenne numbers, defined as: 

𝑀 = 2 − 1 

where 𝑝 is prime, exhibit unique mathematical properties that allow for exceptionally 
efficient primality testing. 

Modulo 2 − 1: Periodicity and Computational Efficiency  

A key property of Mersenne numbers is their binary structure, consisting of 𝑝 
consecutive 1's in binary representation. This structure grants them a cyclic residue 
system when performing modular arithmetic, simplifying reductions and enabling 
rapid computation. 

In particular, modular arithmetic on Mersenne numbers: 

 Wraps cleanly due to the form 2 − 1. 

 Allows reductions that exploit bitwise operations instead of general-purpose 
arithmetic. 

Comparing Efficiency: Lucas-Lehmer vs. Miller-Rabin 

To highlight the computational advantage of the Lucas-Lehmer test, we compare it 
with the Miller-Rabin primality test using a 10,000-digit number 

Miller-Rabin Primality Test (Probabilistic) 

For a number 𝑛 with approximately 10,000 decimal digits: 

𝑛 ≈ 10ଵ, 

The time complexity of the Miller-Rabin test is: [5] 

𝑂(𝑘 ∙ logଷ 𝑛) 

where 𝑘 is the number of iterations (witnesses) required. Using 𝑘 = 10 rounds, we 
calculate: 

𝑙𝑜𝑔 𝑛 = 𝑙𝑜𝑔(10ଵ,) = 10,000 

(𝑙𝑜𝑔 𝑛)ଷ = 10,000ଷ = 10ଵଶ 

Total complexity: 

𝑂(10 ∙ 10ଵଶ) = 10ଵଷ 

Thus, Miller-Rabin requires approximately 10 trillion operations to test primality 
probabilistically. 



Lucas-Lehmer Primality Test (Deterministic) 

For the same 10,000-digit number, the exponent is approximately: 

𝑝 = 𝑙𝑜𝑔ଶ(10ଵ,) ≈ 33,219 

The time complexity of the Lucas-Lehmer test is: [6] 

𝑂(𝑝 ⋅ 𝑙𝑜𝑔ଶ𝑝) 

We calculate: 

𝑙𝑜𝑔(33,219) ≈ 4.5 

4.5ଶ ≈ 20.25 

Total complexity: 

𝑂(33,219 ⋅ 20.25) ≈ 6.7 × 10ହ 

Comparative Analysis 

 Miller-Rabin Test (Probabilistic) ≈ 10ଵଷ operations. 

 Lucas-Lehmer Test (Deterministic) ≈ 10  operations. 

The Lucas-Lehmer test is therefore 7 orders of magnitude faster than the Miller-
Rabin test for numbers of similar size. 

Key Observations 

Structural Advantage of Mersenne Numbers : 

 The binary periodicity of 2 − 1 simplifies modular arithmetic, enabling 
deterministic testing. 

 This property eliminates the need for probabilistic tests and reduces 
computational overhead dramatically . 

Limitations of Yagel Numbers: 

 Yagel numbers lack the binary periodicity that Mersenne primes leverage . 

 As a result, they rely on probabilistic tests like Miller-Rabin, making primality 
verification computationally expensive for large sizes. 

Conclusion 
This paper introduced Yagel numbers, a primorial-based generalization of Mersenne 
numbers, as part of an exploratory effort to uncover new patterns in prime number 
construction. The inspiration for this work stemmed from a simple yet intriguing idea 
– whether systematically filtering out divisors of small primes could create a prime-
rich framework similar to Mersenne primes . 

The journey began with optimism, supported by early numerical evidence showing 
higher-than-expected densities of primes among Yagel numbers. These results, along 



with theoretical insights about sieve density, suggested that structural biases inherent 
to Yagel numbers may promote primality. However, deeper investigation revealed 
limitations tied to computational growth and primality testing . 

The key findings can be summarized as follows : 

 The observation that 39 orders (𝑘) outperform the expectation suggests that 
Yagel numbers exhibit biases favoring primes due to their structured 
construction. While these results differ from purely random distributions, 
further statistical testing would be required to determine whether this reflects 
persistent patterns or local fluctuations. 

 Their growth characteristics, driven by quasi-exponential scaling in 𝑘 and 
true exponential scaling in 𝑛, lead to rapid size escalation, making large-scale 
exploration computationally expensive . 

 Unlike Mersenne numbers, which exploit binary periodicity to enable 
deterministic primality testing with the Lucas-Lehmer test, Yagel numbers 
lack such structural shortcuts. Consequently, they rely on probabilistic tests 
like Miller-Rabin, which become computationally prohibitive for larger 
numbers. 

While this exploration did not yield a computational competitor to Mersenne primes, 
it raised questions worth pursuing: 

 Are there deterministic algorithms that can leverage the multiplicative 
structure of Yagel numbers, similar to how Lucas-Lehmer does for Mersenne 
primes ? 

 Could hybrid frameworks combining primorials and arithmetic progressions 
yield new classes of prime-rich sequences ? 

 What mathematical mechanisms might explain the deviations from random 
prime density expectations observed in Yagel numbers ? 

The limitations uncovered in this study do not diminish its value. Instead, they 
highlight the importance of speculative research – ideas pursued out of curiosity 
rather than expectation. While Yagel numbers may not revolutionize prime discovery, 
they contribute to our understanding of prime patterns and sieve-based methods. 

 

In the end, this paper stands as both a personal exploration and an invitation for 
others to build upon its foundation, whether by refining algorithms, proving 
conjectures, or simply searching for the next mathematical surprise 
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